首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2509篇
  免费   193篇
  国内免费   95篇
  2023年   17篇
  2022年   14篇
  2021年   24篇
  2020年   46篇
  2019年   79篇
  2018年   80篇
  2017年   57篇
  2016年   45篇
  2015年   42篇
  2014年   76篇
  2013年   116篇
  2012年   81篇
  2011年   100篇
  2010年   74篇
  2009年   67篇
  2008年   106篇
  2007年   124篇
  2006年   105篇
  2005年   87篇
  2004年   85篇
  2003年   78篇
  2002年   83篇
  2001年   77篇
  2000年   65篇
  1999年   81篇
  1998年   88篇
  1997年   100篇
  1996年   66篇
  1995年   72篇
  1994年   55篇
  1993年   46篇
  1992年   56篇
  1991年   50篇
  1990年   43篇
  1989年   50篇
  1988年   38篇
  1987年   34篇
  1986年   41篇
  1985年   30篇
  1984年   47篇
  1983年   26篇
  1982年   44篇
  1981年   42篇
  1980年   24篇
  1979年   7篇
  1978年   8篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
排序方式: 共有2797条查询结果,搜索用时 15 毫秒
1.
2.
The introduction of either PGF (10?7 M) or TPA (10?7 M) stimulated, ouabain-sensitive 86Rb+ influx at 30 min in postconfluent 3T3-4 mouse fibroblast cultures by 117% and 124%, respectively. Both TPA and PGF at these concentrations stimulated the incorporation of 3H-TdR into DNA. TPA had the greatest stimulatory effect, which was similar to that obtained with 10% fetal calf serum. In accord with the idea that modulation of membrane processes such as Na+/K+ pump activity in fibroblasts may reflect important events related to the initiation of DNA synthesis, it was observed that in both 3T3-4 and C3H-1 0T½ cells there were parallel increases in 3H-TdR incorporation and ouabain-sensitive 86Rb+ influxes with 10?7 M TPA, whereas PGF stimulated a significant increase in 3H-TdR incorporation in 3T3-4 but not C3H-10T½ cells and only marginal increases in ouabain-sensitive 86Rb+ influx in both. Therefore, although there appears to be a close correlation between Na+/K+ pump activation and subsequent S-phase entry following TPA stimulation, a similar correlation for PGF cannot be confirmed.  相似文献   
3.
《FEBS letters》1988,240(1-2):88-94
Four subtypes of muscarinic acetylcholine receptor (mAChR) were stably expressed in neuroblastoma-glioma hybrid cells (NG108-15). By combining fluorescent indicator dye (fura-2) studies with electrophysiological measurements it is shown that stimulation of mAChR I and mAChR III readily leads to release of calcium from intracellular stores and to associated conductance changes, whereas stimulation of mAChR II and mAChR IV exerts no such effect. Dose-response curves describing the amplitude or the delay of the calcium rise induced by acetylcholine suggest that the apparent affinity of mAChR III for its agonist is higher by about one order of magnitude than that of mAChR I. Ionic substitution experiments and current fluctuation analysis indicate that calcium activates a K+-specific conductance of ‘small’ single-channel amplitude similar to the SK type [1]. Furthermore, an outward current (M current) suppressed by activation of mAChR I and mAChR III has a single-channel amplitude corresponding to a conductance of approximately 3 pS.  相似文献   
4.
With the help of a ribonucleoprotein it is possible to precipitate collagen in a layer of fibers with a 700 Å period. As collagen is a constituent of many membrane systems in the body, it seemed interesting to investigate the permeability of ions and water through a native collagen membrane.The experiments were carried out with the help of an acryl glass apparatus, where an osmotic pressure, a hydrostatic pressure difference or both can be maintained between the two bulk phases separated by the membrane. The diffusion coefficients for NaCl and KCl were found to be comparable with those in other biological membranes (Ds = 9 · 10−7cm2 · s−1) whereas there is difference of more than three orders of magnitude in the hydraulic permeability (Lp = 6 cm4 · J−1 · s−1).Volume flow measurements caused by an osmotic gradient indicated that the reflection coefficient for NaCl and KCl is very small. In hydrostatic pressure experiments, the membrane shows a preferred direction for volume flows which seems to have something to do with the mode of preparation of the membrane.  相似文献   
5.
The current induced in a human exposed to radio frequency electric fields has been studied by the use of a stripline, in which whole body exposure to vertical electric fields (3-27 MHz) can be produced. We have examined two different techniques to measure the induced current; parallel plate meters and current probes. When the subject has good connection to the ground, the choice of measurement technique is not crucial, since there are only minor differences in readings between the instruments. But when the subject is wearing shoes and/or standing on a wooden plate, the difference between the instruments increases considerably. The difference can mainly be explained by the capacitive coupling between the parallel plate meters and the ground; therefore, the current probes are preferred when the subject does not have perfect contact with the ground. Since the International Commission on Non-Ionizing Radiation Protection guidelines demand measurements of induced current in humans exposed to radio frequency fields in the range of 10-110 MHz, the importance of finding an appropriate measurement procedure becomes apparent.  相似文献   
6.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
7.
The position of Helicopsyche borealis (Hagen) (Trichoptera: Helicopsychidae) larvae on the substratum surface is dependent on the current regime but varies with larval size. All size classes of larvae chose significantly different positions on the substratum under high versus low current velocities. All size classes preferred exposed surfaces under low current velocities. Small larvae preferred the upper surfaces of substrata under low current velocities and were physically displaced under high current velocities. Larger larvae also occurred on upper surfaces, but were more evenly dispersed over all surfaces than smaller larvae, and tended to aggregate on down-stream faces of rocks during high flow.  相似文献   
8.
Epithelial Na channels are apparently pore-forming membrane proteins which conduct Na much better than any other biologically abundant ion. The conductance to Na can be 100 to 1000 times higher than that to K. The only other ions that can readily get through this channel are protons and Li. Small organic cations cannot pass through the channel, and water may also be impermeant. The selectivity properties of epithelial Na channels appear to be determined by at least three factors: A high field-strength anionic site, most likely a carboxyl residue of glutamic or aspartic acid residues on the channel protein, probably accounts for the high conductance through these channels of Na and Li and to the low conductance of K, Rb and Cs. A restriction in the size of the pore at its narrowest point probably accounts for the low conductance of organic cations as well as the possible exclusion of water molecules. The outer mouth of the channel appears to be negatively charged and may control access to the region of highest selectivity and may serve as a preliminary selectivity filter, attracting cations over anions. These conclusions are illustrated by the cartoon of the channel in Fig. 3. This picture is obviously both fanciful and simplified, but its general points will hopefully be testable. It leaves open a number of important questions, including: does amiloride block the channel by binding within the outer mouth? what does the inner mouth of the channel look like, and does this part of the channel contribute to selectivity? and what, if any, are the interactions between the features of the channel that impart selectivity and those that control the regulation of the channel by hormonal and other factors?  相似文献   
9.
Summary Nonstationary pump currents which have been observed in K+-free Na+ media after activation of the Na,K-ATPase by an ATP-concentration jump (see the preceding paper) are analyzed on the basis of microscopic reaction models. It is shown that the behavior of the current signal at short times is governed by electrically silent reactions preceding phosphorylation of the protein; accordingly, the main information on charge-translocating processes is contained in the declining phase of the pump current. The experimental results support the Albers-Post reaction scheme of the Na,K-pump, in which the translocation of Na+ precedes translocation of K+. The transient pump current is represented as the sum of contributions of the individual transitions in the reaction cycle. Each term in the sum is the product of a net transition rate times a dielectric coefficient describing the amount of charge translocated in a given reaction step. Charge translocation may result from the motion of ion-binding sites in the course of conformational changes, as well as from movement of ions in access channels connecting the binding sites to the aqueous media. A likely interpretation of the observed nonstationary currents consists in the assumption that the principal electrogenic step is the E1-P/P-E2 conformational transition of the protein, followed by a release of Na+ to the extracellular side. This conclusion is supported by kinetic data from the literature, as well as on the finding that chymotrypsin treatment which is known to block the E1-P/P-E2 transition abolishes the current transient. By numerical simulation of the Albers-Post reaction cycle, the proposed mechanism of charge translocation has been shown to reproduce the experimentally observed time behavior of pump currents.  相似文献   
10.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号